Jump to content

Template:Infobox probability distribution/testcases

From The Democratika Wiki

Normal distribution

Side by side comparison
{{Infobox probability distribution}}{{Infobox probability distribution/sandbox}}
Normal Distribution
Probability density function
Probability density function for the normal distribution
The red curve is the standard normal distribution
Cumulative distribution function
Cumulative distribution function for the normal distribution
Notation 𝒩(μ,σ2)
Parameters μ = mean (location)
σ2>0 = variance (squared scale)
Support x
PDF 12πσ2e(xμ)22σ2
CDF 12[1+erf(xμσ2)]
Quantile μ+σ2erf1(2p1)
Mean μ
Median μ
Mode μ
Variance σ2
MAD 2/πσ
Skewness 0
Excess kurtosis 0
Entropy 12log(2πeσ2)
MGF exp(μt+σ2t2/2)
CF exp(iμtσ2t2/2)
Fisher information

(μ,σ)=(1/σ2002/σ2)

(μ,σ2)=(1/σ2001/(2σ4))
Kullback–Leibler divergence DKL(𝒩0𝒩1)=12{(σ0/σ1)2+(μ1μ0)2σ121+2lnσ1σ0}
Normal Distribution
Probability density function
Probability density function for the normal distribution
The red curve is the standard normal distribution
Cumulative distribution function
Cumulative distribution function for the normal distribution
Notation 𝒩(μ,σ2)
Parameters μ = mean (location)
σ2>0 = variance (squared scale)
Support x
PDF 12πσ2e(xμ)22σ2
CDF 12[1+erf(xμσ2)]
Quantile μ+σ2erf1(2p1)
Mean μ
Median μ
Mode μ
Variance σ2
MAD 2/πσ
Skewness 0
Ex. kurtosis 0
Entropy 12log(2πeσ2)
MGF exp(μt+σ2t2/2)
CF exp(iμtσ2t2/2)
Fisher information

(μ,σ)=(1/σ2002/σ2)

(μ,σ2)=(1/σ2001/(2σ4))
Kullback-Leibler divergence DKL(𝒩0𝒩1)=12{(σ0/σ1)2+(μ1μ0)2σ121+2lnσ1σ0}

Binomial distribution

Side by side comparison
{{Infobox probability distribution}}{{Infobox probability distribution/sandbox}}
Binomial distribution
Probability mass function
Probability mass function for the binomial distribution
Cumulative distribution function
Cumulative distribution function for the binomial distribution
Notation B(n,p)
Parameters n{0,1,2,} – number of trials
p[0,1] – success probability for each trial
Support k{0,1,,n} – number of successes
PMF (nk)pk(1p)nk
CDF I1p(nk,1+k)
Mean np
Median np or np
Mode (n+1)p or (n+1)p1
Variance np(1p)
Skewness 12pnp(1p)
Excess kurtosis 16p(1p)np(1p)
Entropy 12log2(2πenp(1p))+O(1n)
in shannons. For nats, use the natural log in the log.
MGF (1p+pet)n
CF (1p+peit)n
PGF G(z)=[(1p)+pz]n
Fisher information gn(p)=np(1p)
(for fixed n)
Binomial distribution
Probability mass function
Probability mass function for the binomial distribution
Cumulative distribution function
Cumulative distribution function for the binomial distribution
Notation B(n,p)
Parameters n{0,1,2,} – number of trials
p[0,1] – success probability for each trial
Support k{0,1,,n} – number of successes
PMF (nk)pk(1p)nk
CDF I1p(nk,1+k)
Mean np
Median np or np
Mode (n+1)p or (n+1)p1
Variance np(1p)
Skewness 12pnp(1p)
Ex. kurtosis 16p(1p)np(1p)
Entropy 12log2(2πenp(1p))+O(1n)
in shannons. For nats, use the natural log in the log.
MGF (1p+pet)n
CF (1p+peit)n
PGF G(z)=[(1p)+pz]n
Fisher information gn(p)=np(1p)
(for fixed n)

Geometric distribution

Side by side comparison
{{Infobox probability distribution}}{{Infobox probability distribution/sandbox}}
Geometric
Probability mass function
File:Geometric pmf.svg
Cumulative distribution function
File:Geometric cdf.svg
Parameters 0<p<1 success probability (real) 0<p1 success probability (real)
Support k trials where k{1,2,3,} k failures where k{0,1,2,3,}
PMF (1p)k1p (1p)kp
CDF 1(1p)k 1(1p)k+1
Mean 1p 1pp
Median

1log2(1p)

(not unique if 1/log2(1p) is an integer)

1log2(1p)1

(not unique if 1/log2(1p) is an integer)
Mode 1 0
Variance 1pp2 1pp2
Skewness 2p1p 2p1p
Excess kurtosis 6+p21p 6+p21p
Entropy (1p)log2(1p)plog2pp (1p)log2(1p)plog2pp
MGF pet1(1p)et,
for t<ln(1p)
p1(1p)et
CF peit1(1p)eit p1(1p)eit
Geometric
Probability mass function
File:Geometric pmf.svg
Cumulative distribution function
File:Geometric cdf.svg
Parameters 0<p<1 success probability (real) 0<p1 success probability (real)
Support k trials where k{1,2,3,} k failures where k{0,1,2,3,}
PMF (1p)k1p (1p)kp
CDF 1(1p)k 1(1p)k+1
Mean 1p 1pp
Median

1log2(1p)

(not unique if 1/log2(1p) is an integer)

1log2(1p)1

(not unique if 1/log2(1p) is an integer)
Mode 1 0
Variance 1pp2 1pp2
Skewness 2p1p 2p1p
Ex. kurtosis 6+p21p 6+p21p
Entropy (1p)log2(1p)plog2pp (1p)log2(1p)plog2pp
MGF pet1(1p)et,
for t<ln(1p)
p1(1p)et
CF peit1(1p)eit p1(1p)eit

Gamma distribution

Side by side comparison
{{Infobox probability distribution}}{{Infobox probability distribution/sandbox}}
Gamma
Probability density function
Probability density plots of gamma distributions
Cumulative distribution function
Cumulative distribution plots of gamma distributions
Parameters
  • α > 0 shape
  • β > 0 rate
  • Support x(0,) x(0,)
    PDF 1Γ(k)θkxk1exθ βαΓ(α)xα1eβx
    CDF 1Γ(k)γ(k,xθ) 1Γ(α)γ(α,βx)
    Mean E[X]=kθ E[X]=αβ
    Median No simple closed form No simple closed form
    Mode (k1)θ for k1 α1β for α1
    Variance Var(X)=kθ2 Var(X)=αβ2
    Skewness 2k 2α
    Excess kurtosis 6k 6α
    Entropy k+lnθ+lnΓ(k)+(1k)ψ(k) αlnβ+lnΓ(α)+(1α)ψ(α)
    MGF (1θt)k for t<1θ (1tβ)α for t<β
    CF (1θit)k (1itβ)α
    Gamma
    Probability density function
    Probability density plots of gamma distributions
    Cumulative distribution function
    Cumulative distribution plots of gamma distributions
    Parameters
  • α > 0 shape
  • β > 0 rate
  • Support x(0,) x(0,)
    PDF 1Γ(k)θkxk1exθ βαΓ(α)xα1eβx
    CDF 1Γ(k)γ(k,xθ) 1Γ(α)γ(α,βx)
    Mean E[X]=kθ E[X]=αβ
    Median No simple closed form No simple closed form
    Mode (k1)θ for k1 α1β for α1
    Variance Var(X)=kθ2 Var(X)=αβ2
    Skewness 2k 2α
    Ex. kurtosis 6k 6α
    Entropy k+lnθ+lnΓ(k)+(1k)ψ(k) αlnβ+lnΓ(α)+(1α)ψ(α)
    MGF (1θt)k for t<1θ (1tβ)α for t<β
    CF (1θit)k (1itβ)α